3.404 \(\int \frac{\sec (c+d x) (B \sec (c+d x)+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=126 \[ \frac{(5 B+19 C) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{16 \sqrt{2} a^{5/2} d}+\frac{(5 B-13 C) \tan (c+d x)}{16 a d (a \sec (c+d x)+a)^{3/2}}-\frac{(B-C) \tan (c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}} \]

[Out]

((5*B + 19*C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d) - ((B
- C)*Tan[c + d*x])/(4*d*(a + a*Sec[c + d*x])^(5/2)) + ((5*B - 13*C)*Tan[c + d*x])/(16*a*d*(a + a*Sec[c + d*x])
^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.33442, antiderivative size = 126, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 40, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.125, Rules used = {4072, 4008, 4000, 3795, 203} \[ \frac{(5 B+19 C) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{16 \sqrt{2} a^{5/2} d}+\frac{(5 B-13 C) \tan (c+d x)}{16 a d (a \sec (c+d x)+a)^{3/2}}-\frac{(B-C) \tan (c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]*(B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

((5*B + 19*C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d) - ((B
- C)*Tan[c + d*x])/(4*d*(a + a*Sec[c + d*x])^(5/2)) + ((5*B - 13*C)*Tan[c + d*x])/(16*a*d*(a + a*Sec[c + d*x])
^(3/2))

Rule 4072

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(
x_)]^2*(C_.))*((c_.) + csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.), x_Symbol] :> Dist[1/b^2, Int[(a + b*Csc[e + f*x])
^(m + 1)*(c + d*Csc[e + f*x])^n*(b*B - a*C + b*C*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 4008

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_
)), x_Symbol] :> -Simp[((A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(b*f*(2*m + 1)), x] + Dist[1/(b^2*(2*
m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[A*b*m - a*B*m + b*B*(2*m + 1)*Csc[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rule 4000

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[((A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(a*f*(2*m + 1)), x] + Dist[(a*B*m + A*b*
(m + 1))/(a*b*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, A, B, e, f}, x
] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] && LtQ[m, -2^(-1)]

Rule 3795

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sec (c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{5/2}} \, dx &=\int \frac{\sec ^2(c+d x) (B+C \sec (c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx\\ &=-\frac{(B-C) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac{\int \frac{\sec (c+d x) \left (-\frac{5}{2} a (B-C)-4 a C \sec (c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx}{4 a^2}\\ &=-\frac{(B-C) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac{(5 B-13 C) \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac{(5 B+19 C) \int \frac{\sec (c+d x)}{\sqrt{a+a \sec (c+d x)}} \, dx}{32 a^2}\\ &=-\frac{(B-C) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac{(5 B-13 C) \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}-\frac{(5 B+19 C) \operatorname{Subst}\left (\int \frac{1}{2 a+x^2} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{16 a^2 d}\\ &=\frac{(5 B+19 C) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a+a \sec (c+d x)}}\right )}{16 \sqrt{2} a^{5/2} d}-\frac{(B-C) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac{(5 B-13 C) \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}\\ \end{align*}

Mathematica [A]  time = 1.43266, size = 131, normalized size = 1.04 \[ \frac{\tan (c+d x) \left (\sqrt{1-\sec (c+d x)} ((5 B-13 C) \sec (c+d x)+B-9 C)+2 \sqrt{2} (5 B+19 C) \cos ^4\left (\frac{1}{2} (c+d x)\right ) \sec ^2(c+d x) \tanh ^{-1}\left (\frac{\sqrt{1-\sec (c+d x)}}{\sqrt{2}}\right )\right )}{16 d \sqrt{1-\sec (c+d x)} (a (\sec (c+d x)+1))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sec[c + d*x]*(B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

((2*Sqrt[2]*(5*B + 19*C)*ArcTanh[Sqrt[1 - Sec[c + d*x]]/Sqrt[2]]*Cos[(c + d*x)/2]^4*Sec[c + d*x]^2 + Sqrt[1 -
Sec[c + d*x]]*(B - 9*C + (5*B - 13*C)*Sec[c + d*x]))*Tan[c + d*x])/(16*d*Sqrt[1 - Sec[c + d*x]]*(a*(1 + Sec[c
+ d*x]))^(5/2))

________________________________________________________________________________________

Maple [B]  time = 0.261, size = 602, normalized size = 4.8 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x)

[Out]

1/32/d/a^3*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))*(-5*B*cos(d*x+c)^2*sin(d*x+c)*ln(((-2*cos(d*x+c
)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)-19*C*cos(d*x
+c)^2*sin(d*x+c)*ln(((-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*x+c)/
(cos(d*x+c)+1))^(1/2)-10*B*sin(d*x+c)*cos(d*x+c)*ln(((-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-cos(d*x+c
)+1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)-38*C*sin(d*x+c)*cos(d*x+c)*ln(((-2*cos(d*x+c)/(cos(d*x+c
)+1))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+2*B*cos(d*x+c)^3-5*B*ln(
((-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2
)*sin(d*x+c)-18*C*cos(d*x+c)^3-19*C*ln(((-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+
c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+8*B*cos(d*x+c)^2-8*C*cos(d*x+c)^2-10*B*cos(d*x+c)+26*C*cos
(d*x+c))/(cos(d*x+c)+1)/sin(d*x+c)^3

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [A]  time = 0.617093, size = 1233, normalized size = 9.79 \begin{align*} \left [-\frac{\sqrt{2}{\left ({\left (5 \, B + 19 \, C\right )} \cos \left (d x + c\right )^{3} + 3 \,{\left (5 \, B + 19 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \,{\left (5 \, B + 19 \, C\right )} \cos \left (d x + c\right ) + 5 \, B + 19 \, C\right )} \sqrt{-a} \log \left (\frac{2 \, \sqrt{2} \sqrt{-a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 3 \, a \cos \left (d x + c\right )^{2} + 2 \, a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 4 \,{\left ({\left (B - 9 \, C\right )} \cos \left (d x + c\right )^{2} +{\left (5 \, B - 13 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{64 \,{\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}, -\frac{\sqrt{2}{\left ({\left (5 \, B + 19 \, C\right )} \cos \left (d x + c\right )^{3} + 3 \,{\left (5 \, B + 19 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \,{\left (5 \, B + 19 \, C\right )} \cos \left (d x + c\right ) + 5 \, B + 19 \, C\right )} \sqrt{a} \arctan \left (\frac{\sqrt{2} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt{a} \sin \left (d x + c\right )}\right ) - 2 \,{\left ({\left (B - 9 \, C\right )} \cos \left (d x + c\right )^{2} +{\left (5 \, B - 13 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{32 \,{\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

[-1/64*(sqrt(2)*((5*B + 19*C)*cos(d*x + c)^3 + 3*(5*B + 19*C)*cos(d*x + c)^2 + 3*(5*B + 19*C)*cos(d*x + c) + 5
*B + 19*C)*sqrt(-a)*log((2*sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c)
+ 3*a*cos(d*x + c)^2 + 2*a*cos(d*x + c) - a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) - 4*((B - 9*C)*cos(d*x + c
)^2 + (5*B - 13*C)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 +
 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d), -1/32*(sqrt(2)*((5*B + 19*C)*cos(d*x + c)^3 + 3*(5*B
+ 19*C)*cos(d*x + c)^2 + 3*(5*B + 19*C)*cos(d*x + c) + 5*B + 19*C)*sqrt(a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c)
 + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - 2*((B - 9*C)*cos(d*x + c)^2 + (5*B - 13*C)*cos(d*x
+ c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3
*a^3*d*cos(d*x + c) + a^3*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (B + C \sec{\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}}{\left (a \left (\sec{\left (c + d x \right )} + 1\right )\right )^{\frac{5}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(5/2),x)

[Out]

Integral((B + C*sec(c + d*x))*sec(c + d*x)**2/(a*(sec(c + d*x) + 1))**(5/2), x)

________________________________________________________________________________________

Giac [A]  time = 9.29425, size = 258, normalized size = 2.05 \begin{align*} -\frac{\sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}{\left (\frac{2 \, \sqrt{2}{\left (B a^{5} - C a^{5}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2}}{a^{8} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )} + \frac{\sqrt{2}{\left (3 \, B a^{5} - 11 \, C a^{5}\right )}}{a^{8} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \frac{\sqrt{2}{\left (5 \, B + 19 \, C\right )} \log \left ({\left | -\sqrt{-a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt{-a} a^{2} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}}{32 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

-1/32*(sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*(2*sqrt(2)*(B*a^5 - C*a^5)*tan(1/2*d*x + 1/2*c)^2/(a^8*sgn(tan(1/2*
d*x + 1/2*c)^2 - 1)) + sqrt(2)*(3*B*a^5 - 11*C*a^5)/(a^8*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)))*tan(1/2*d*x + 1/2*c
) - sqrt(2)*(5*B + 19*C)*log(abs(-sqrt(-a)*tan(1/2*d*x + 1/2*c) + sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)))/(sqrt(
-a)*a^2*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)))/d